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Dependency grammars

« Dep y popularity in linguistics (p: lyin CL)
rather recently

« They are old: roots can be traced back to Panini (approx. 5th century BCE)

+ Modern dependency grammars are often attributed to Tesnicre (1959)
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Dependency grammars
Advantages and dssdvantges

Close relation to semantics.

+ Easier for lexible/free word order
Lots,lots of (multi-lingual) computational work, resources.

+ Often much useful in downstream tasks
More efficient parsing algorithms

~ No distinction between modification of head or the whole ‘constituent’
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Dependency parsing

+ Dependency parsing has many similarities with context-free parsing (e.3,
trees)

+ Italso has some differences (e, number of edges and depth of trees are
limited)
+ Dependency parsing can be.
~ grammar-driven (hand crafted rules or constraints)
~ data-driven (rules/model s learned from a treebank)

Grammar-driven dependency parsing

+ Grammar-driven dependency parsers typically based on
- lexicalized CF parsing
constraint satisfaction problem

ot o weghiad, conianis e usea
- Practcal implementations exist
+ Our focus will be on data-driven methods.

Data-driven dependency par:
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Transition based parsing A typical transition system
(@1 W, W 1B A)
« Usea stackand a bufér of unprocessed words —_— e W
+ Parsing as predicting a sequence of transitions like , :
Lerr-Asc: mark current word as the head of the word on top of the stack LerrArcy: (0| wi,w; |B,A) = (0, w; | B AU{W;,rwil))
Ricur-Axc: mark current word as  dependent of the word on top of the stack - popw,
‘Swurr: prsh the current word on o the stack  addarc (1w, 7w, 0 A (keep v, n the bufer)
+ Algorithun terminates when all words i the nputare processed RaurAsc: (1 wow 1B.A) 5 (0wl BAUTwrwyl)
« The transitions are not naturally deterministic, best transition is predictec * POP Wi,
Rty T S < addar w104,
: ~ move ws to the utfer
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« pushw, to thestack
« remove it from the buffer
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Note: We need Starr for NP attachment.
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Transition based parsing: example

stack
buffer

Making transition decisions

. U (for formal I
to determinize the parser actions

table

traina

+ Almost any machine learning (classification) method is applicable

« The features used for prediction is extracted from the states of the parser:
~ Top-k words on the stack
- Nextem word:
~ Transition decisions made so far (the arcs)

+ Given these objects, one can extract and use arbitrary features:
- Words as categorical variables.

POS tags

~ Embeddings

The training data

parser configurations
« The data obtaining g data
+ The general idea s to constucta transiton sequence by performing a mock’
parsing using trecbank annofations as an ‘oracle’
« There may be multiple sequences that yield the same dependency tree, this
procedure defines a canonical’ transition sequence.
« For example,
LurrAxc, if (B(O].v,000]) € A
Ricr-Are, i (000] v, Bl0]) € A
and all dependents of B 0] are attached
Strr otherwise

Non-projective parsing

+ The transition-based parsing we defined so far works only for projective
dependencies
« On¢
operations:
- Swroperation hat swaps okens n e sackand the bufier

. Anmher mthod s pdo-profcive parsin
reprocessing to projectivize’ the trees before training

~ post-processing for restoring the projectvity after parsing
+ Revntroduce projectivityfor the marked dependencies

Pseudo-projective parsing
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ion based parsing: summary/notes

« Linear time, greedy, projective parsing.
« Can be extended to non-projective dependencies

+ We need some extra work for generating gold-standard transition sequences
from trecbanks

Eary errors propagate,
long-distance dependencies

« The greedy algorithm can be extended to beam search for better accuracy
(stil inear time complexity)

MST algorithm for dependency parsing

+ Fordirected graphs,there s a polynomial time algorithm that finds the
tree (MST) of a ful
(ChurLiu-Edmonds algorithm)
witha
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MST example
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Properties of the MST parser
ol « The MST parser s non-projective
TC « There is an algorithm with O(n?) time complexity
increases with ty but stll close to
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 The welghts/parametersare associated with edges (often called
‘arcactored’)
+ Wecan lear the ar weightsdirectly from atrecbank
+ However, it s difcult to ncorporate norlocal features




External features Evaluation metrics for dependency parsers

+ Like CF parsing, exact match is often too strict

* For both typeof pases one can obian etures hat arebased on - a5) ey
nsupervised methods Such - score (UAS & p
clusering cure often used for s on id
~ dense vector representations (embecdings)
- alignment/transfer from bilingual corpora trechanks * prtear dependeny e
T S el precision i theratio of corecty identified dependencies (of a certan type)
recall
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Evaluation example Dependency parsing: summary
+ Dependency relations are often semanticallyeastr to inerpret
r-wsmmpm ; i 'd' MMI parsing
- = + Dependency relations are betweeen words, no phrases or ther abstract nodes
H H (=2 are postulated
h,. duk 1 her  duck « Tovo general methods:

transition based greedy search, non-local features, fast, less accurate
graph based exact search, local features, slower, aceurate (within model

imitations)

Precisionsun; + Combination of different pe

Recallyeuny  100% + Non-projective parsing is more difficult

Precision,y, 0% (assumed) - Most pa search has focused on learning
Recallo; o methods (mainly using neural networks)

+ Reading suggestion: Jurafsky and Martin (2009, draft chapter 14) Kubler,
McDonald, and Nivre (2009)
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