Finite state automata

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2021/22

version: 509510d @2022-01-16

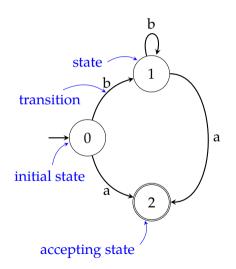
Why study finite-state automata?

- Unlike some of the abstract machines we discussed, finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching
 - ...

But more importantly ;-)

- Tokenization, stemming
- Morphological analysis
- Spell checking
- Shallow parsing/chunking

- ...


Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - Deterministic finite automata (DFA)
 - Non-deterministic finite automata (NFA)

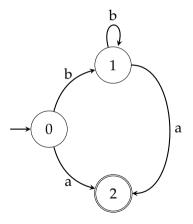
Note: the NFA is a superset of DFA.

FSA as a graph

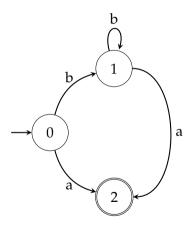
- An FSA is a directed graph
- States are represented as nodes
- Transitions are labeled edges
- One of the states is the *initial state*
- Some states are accepting states

DFA: formal definition

Formally, a finite state automaton, M, is a tuple (Σ,Q,q_0,F,Δ) with

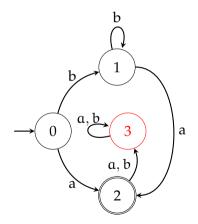

- $\boldsymbol{\Sigma}~$ is the alphabet, a finite set of symbols
- Q a finite set of states
- $q_0\;$ is the start state, $q_0\in Q$
 - $\mathsf{F}\xspace$ is the set of final states, $\mathsf{F}\subseteq Q$
- $\Delta\,$ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta:Q\times\Sigma\to Q)$

At any state and for any input, a DFA has a single well-defined action to take.

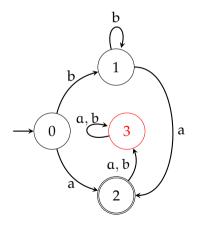

DFA: formal definition

an example

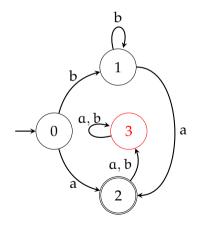
$$\Sigma = \{a, b\}
Q = \{q_0, q_1, q_2\}
q_0 = q_0
F = \{q_2\}
\Delta = \{(q_0, a) \to q_2, (q_0, b) \to q_1, (q_1, a) \to q_2, (q_1, b) \to q_1\}$$



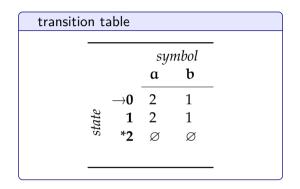
• Is this FSA deterministic?


error or sink state

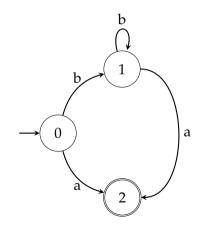
- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state

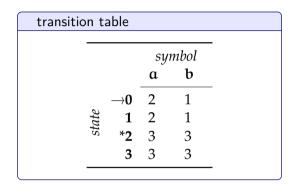

error or sink state

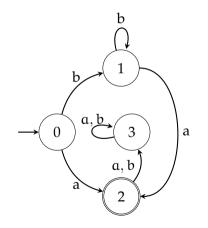
- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state

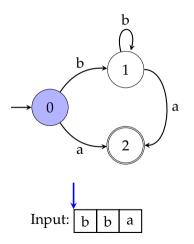


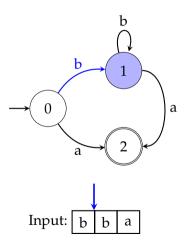
error or sink state

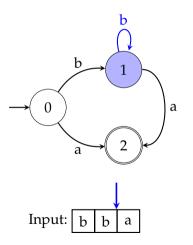

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails

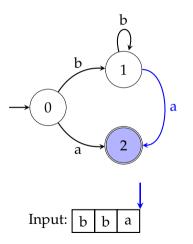

DFA: the transition table

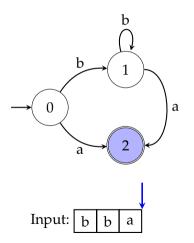

- $\rightarrow \,\,$ marks the start state
 - * marks the accepting state(s)


DFA: the transition table

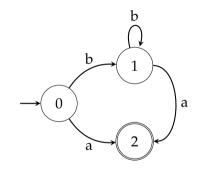

- $\rightarrow \,\,$ marks the start state
 - * marks the accepting state(s)

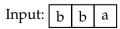

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input


- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input


- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

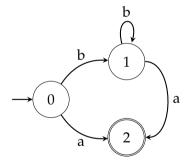
- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

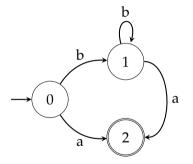

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input



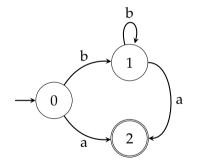
- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- What is the complexity of the algorithm?
- How about inputs:
 - bbbb


– aa


A few questions

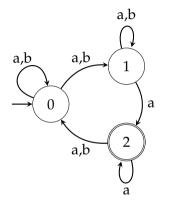
• What is the language recognized by this FSA?

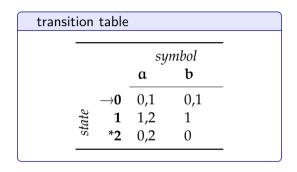

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?
- Draw a DFA recognizing strings with even number of 'a's over $\Sigma = \{a, b\}$

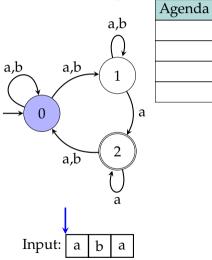

Non-deterministic finite automata

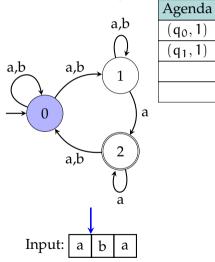

Formal definition

A non-deterministic finite state automaton, *M*, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

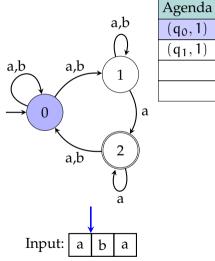
- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- $q_0\;\; \text{is the start state, } q_0 \in Q$
 - $\mathsf{F}\xspace$ is the set of final states, $\mathsf{F}\subseteq Q$
- Δ is a function from (Q, Σ) to P(Q), power set of Q $(\Delta : Q \times \Sigma \rightarrow P(Q))$

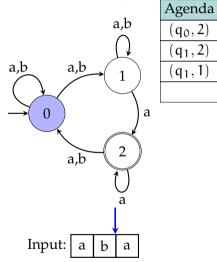
An example NFA

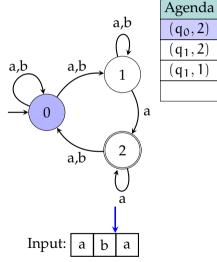


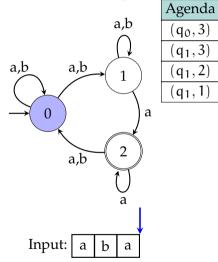

- We have nondeterminism, e.g., if the first input is a, we need to choose between states 0 or 1
- Transition table cells have sets of states

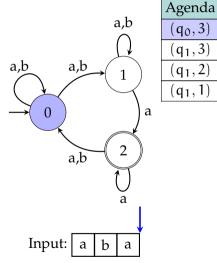
Dealing with non-determinism

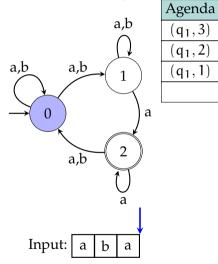

- Follow one of the links, store alternatives, and *backtrack* on failure
- Follow all options in parallel

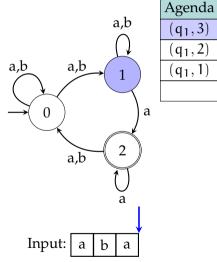

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise


- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

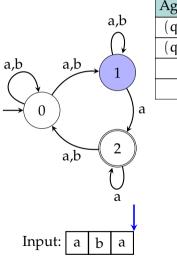

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise


- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

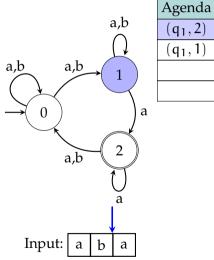

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise


- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

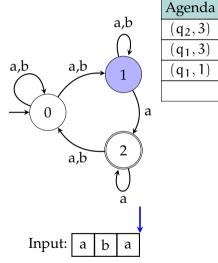
- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise



- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty
- Backtrack otherwise

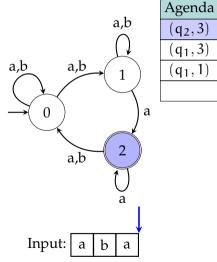

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

as search (with backtracking)



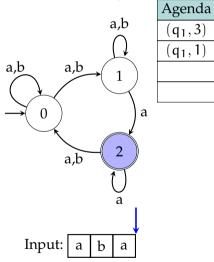
Agenda $(q_1, 2)$ $(q_1, 1)$

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty
- Backtrack otherwise


- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

NFA recognition

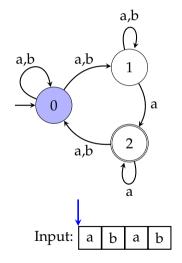

as search (with backtracking)

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

NFA recognition

as search (with backtracking)

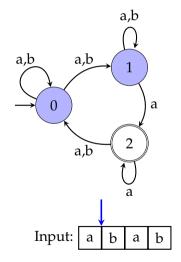
- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise


NFA recognition as search

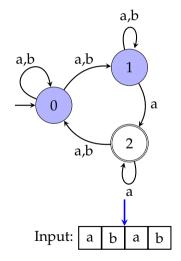
summary

- Worst time complexity is exponential
 - Complexity is worse if we want to enumerate all derivations
- We used a stack as agenda, performing a depth-first search
- A queue would result in breadth-first search
- If we have a reasonable heuristic A* search may be an option
- Machine learning methods may also guide finding a fast or the best solution

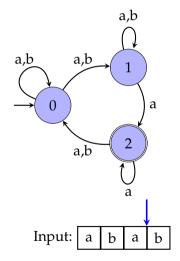
NFA recognition


parallel version

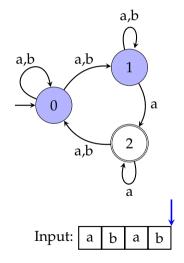
1. Start at q_0


- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

NFA recognition

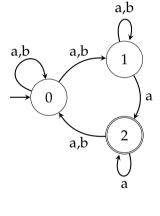

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

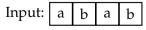
NFA recognition


- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

NFA recognition

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept


NFA recognition

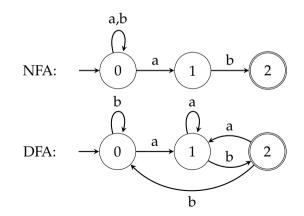


- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

NFA recognition

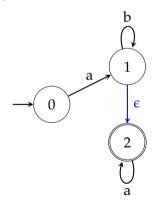
parallel version

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

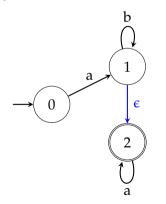

Note: the process is *deterministic*, and *finite-state*.

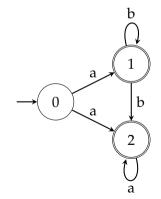
An exercise

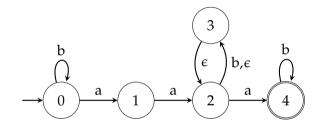
Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab.


An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab.


One more complication: ε transitions


- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ε-NFA can be converted to an NFA


One more complication: ε transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ε-NFA can be converted to an NFA

ϵ -transitions need attention

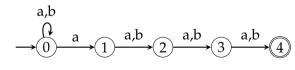
- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ε transitions?

NFA–DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

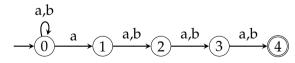
- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)


A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise


1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

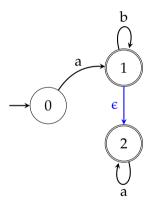
A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

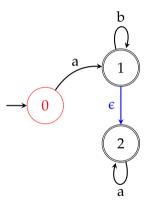
2. Construct a DFA for the same language

Summary

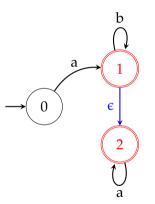
- FSA are efficient tools with many applications
- FSA have two flavors: DFA, NFA (or maybe three: $\epsilon\text{-NFA})$
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

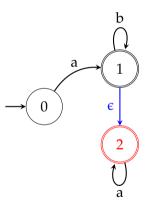

Next:

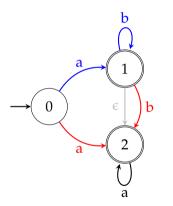
- FSA determinization, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

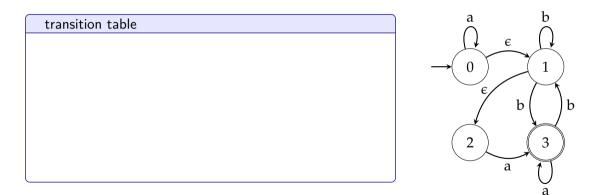

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

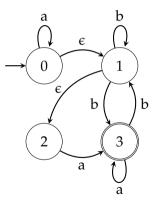

• We start with finding the $\varepsilon\text{-}closure$ of all states


- We start with finding the ϵ -closure of all states
 - ϵ -closure $(q_0) = \{q_0\}$

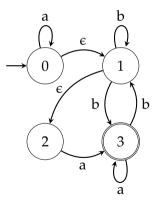

- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q1, q2\}$

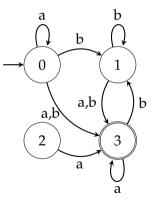


- We start with finding the *e-closure* of all states
 - ϵ -closure(q₀) = {q₀}
 - ε -closure(q₁) = {q1, q2}
 - ϵ -closure $(q_2) = \{q_2\}$



- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\ \varepsilon\text{-closure}(q_1) = \{q1, q2\}$
 - ϵ -closure(q₂) = {q₂}
- Replace each arc to each state with arc(s) to all states in the ε-closure of the state




tran	sitior	ı tab	le	
			sy	mbol
		a	b	e
	$\rightarrow 0$	0	Ø	1
state	1	Ø	1,3	2
st		3		Ø
	*3	3	1	Ø

transi	tior	n tab	ole						
		symbol a b e e*							
		a	b	e	ϵ^*				
	→ 0	0	Ø	1	0,1,2				
state	1	Ø	1,3	2	1,2				
st	2	3	Ø	Ø	2				
:	*3	3	1	Ø	3				

a	b		ϵ^*			syn a	ıbol b
	b	e	ϵ^*			-	b
0	~						
0	Ø	1	0,1,2	\Rightarrow	$\rightarrow 0$	0,1,2	1,3
Ø	1,3	2	1,2		1	1,2,3	1,2,3
3	Ø	Ø	2		2	3	Ø
3	1	Ø	3		*3	3	1,2
	3	3 Ø	3 Ø Ø	3 Ø Ø 2	3 Ø Ø 2	3 Ø Ø 2 2	3 Ø Ø 2 2 3

