Maps and hash tables

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağn Çoltekin

ccoltekinasfa.uni-tuebingen.de
Univeraty ot Tubingon
Seminar fur Sprachwisenschaft
Winter Semester 2001/22

Hashing and hash-based data structure

- A hash function is a one-way function that takes a variable-length object, and turns it into a fixed-length bit string
- Most common applications of hash functions is the map (or associative array, or dictionary, or symbol table) data structure
- Maps are array-like data structures ($\mathrm{O}(1)$ access/update) but can be indexed using arbitrary objects (e.g., strings)
- Hashing has many other applications
- Database indexing
- Efficient duplicate detection
- File signatures: verification against corrupt/tempered files
- Password storage
- Electronic signatures
- As part of many other cryptographic algorithms/applications

Implementing sets and maps

	Check/retrieve	Add	Remove
Sorted array:	$O(\log n)$	$O(n)$	$O(n)$
Unsorted array:	$O(n)$	$O(1)$	$O(n)$
Skip list:	$O(\log n)$	$O(\log n)$	$O(\log n)$
Balanced search trees:	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash tables:	$O(1)$	$O(1)$	$O(1)$

- Check whether an object is in the set (x in s)
- Add an element to a set (ε. $\operatorname{add}(\mathrm{x})$)
- Remove an element from a set
(s. remove(x))
- Retrieve the value of a key (d[key])
- Associate a key with value
(d[key] - val)
- Remove key-value pair
(del d[key])

Maps and sets

- Two common data structures that use hashing is sets and maps (Python dict)
- set abstract data type is based on the sets in mathematics: unordered collection without duplicates
- map abstract data type is a collection that allows indexing with almost any data type (Python dicts require immutable data types) Basic operations include
Sets:

Wravisemew 2m1/22 $3 / 2$

A trivial array implementation
store each element 1 at indexi (assuming non-negative integer keys for now)

+ All operations are $\mathrm{O}(1)$
- Cannot handle non-integer,
non-negative keys
Wastes a lot of memory if key values are spread across a wide range

Hash functions

- A hash function $h()$ maps a key to an integer index between 0 and m (size of the array)
- We use $h(k)$ as an index to an array (of size m)
- If we map two different key values to the same integer, a collision occurs
- The main challenge with implementing hash maps is to avoid and handle the collisions
- We can think of a hash function in two parts:
- map any object (variable bit string) to an integer (e.g., 32 or 64 bit)
- compress the range of integers to map size (m)

Compressing the hash codes

Separate chaining
or closed addressing

0	$\rightarrow 10$	
1	$\rightarrow 11$	add(3)
2		add (8)
3	$\rightarrow 3$	add(97)
4		add(11)
5		add(10)
6		
7	$\longrightarrow 97$	
8	$\rightarrow 8$	
9		

- Each array element keeps a pointer to a secondary container (typically a list)
When a collision occurs, add the item to the list,

Separate chaining
or closed addressing

- Each array element keeps a pointer to a secondary container (typically a list)
- When a collision occurs, add the item to the list,

Separate chaining
or closed 3ddressing

- Each array element keeps a pointer to a secondary container (typically a list)
- When a collision occurs, add the item to the list,

Separate chaining
or cloced addrexing
or closed addressing

- Each array element keeps a pointer to a secondary container (typically a list)
- When a collision occurs, add the item to the list,

Separate chaining
or closed addressing

0	$\xrightarrow{\rightarrow} 10 \rightarrow 30 \rightarrow 40$	
1	$\rightarrow 11$	add(3)
2		$\operatorname{add}(8)$
3	3	add(97)
4		add(11)
5	$\rightarrow 15 \rightarrow 25$	add (10)
6		add (40)
7	$\rightarrow 97$	add(15)
8	8	add (25)
9		add(30)

- Each array element keeps a pointer to a secondary container (typically a list)
- When a collision occurs, add the item to the list,
- Why not just add to the head of the - Why

Complexity of separate chaining

is it really O(1)

- All operations require locating the element first
- Cost of locating an element include hashing (constant) + search in secondary data structure
- This means worst-case complexity is $\mathrm{O}(\mathrm{n})$
- With a good hash function, the probability of a collisions is n / m : average bucket size is $\mathrm{O}(\mathrm{n} / \mathrm{m})=\mathrm{O}(1)($ if $\mathrm{m}>\mathrm{n})$
- Expected complexity for all operations is O(1)

Load factor for separate chaining

- Load factor of a hash map is
load factor $=\frac{\text { number of entries }}{\text { number of indices }}$
- Low load factor means
- better run time (fewer collisions)
- more memory usage
- When load factor is over a threshold, the map is extended (needs rehash)
- Recommendation vary, but a load factor around 0.75 is considered optimal

Rehashing

Open addressing (linear probing)
adding/accessing thems

- During insertion, if there is a collision, look for the next empty slot, and insert
- During lookup, probe until there is an empty slot

$\begin{array}{lll}\text { Watirsomis man/22 } & 11 / 23\end{array}$

Open addressing (linear probing)
adding/sccessing titems

- During insertion, if there is a collision, look for the next
empty slot, and insert
add (3)
add (8)
add(97)
add(11)
$\operatorname{add}(10)$
$\operatorname{add}(40)$
add (22)
- During lookup, probe until there is an empty slot

Open addressing (linear probing)
deleting tems

remove (40)

We can locate an element as usual, and delete it

Open addressing (linear probing)
deleting items

remove (40) contains (22)

- We can locate an element as usual, and delete it

However, this breaks probing! now $h(22)$ will point to an empty slot

- Rearranging the remaining items is complex \& costly

Quadratic probing

- Linear probing tends to create clusters of items, especially if load factor is high (>0.5)
Quadratic probing provides some improvements
- Probe $\left(h(k)+i^{2}\right)$ mod m for $i=0,1, \ldots$ until an empty slot is found

If m is prime, and load factor is less than 0.5 , quadratic probing is guaranteed to find an empty slot

- Although better than linear porobing, quadratic probing creates its own kind of clustering

Open addressing (linear probing)
deleting items

- We can locate an element as usual, and delete it
- However, this breaks probing: now $h(22)$ will point to an empty slot
- Rearranging the remaining items is complex \& costly
- We insert a special value,
- During lookup, treat it as full
- During insertion, treat it as empty

Double hashing

- Similar to quadratic probing, probe non-linearly
- Instead of probing the next item, probe $\left(\mathrm{h}(\mathrm{k})+\mathrm{i} \times \mathrm{h}^{\prime}(\mathrm{k})\right)$ mod m for $\mathrm{i}=0, \mathrm{l}, \ldots$ where $\mathrm{h}^{\prime}(\mathrm{k})$ another hash function
- A common choice is $\mathrm{h}^{\prime}(\mathrm{k})=\mathrm{q}-(\mathrm{k} \bmod \mathrm{q})$ for a prime number $\mathrm{q}<m$

Using a pseudo random number generator

- This method probes $\left(h(k)+i \times r_{i}\right)$ mod m for $i=0,1, \ldots$ where r_{i} is the $i^{\text {th }}$ number generated by a pseudo random number generator
- Pseudo random number generators generate numbers that are close to uniform. However given the same seed, the sequence is deterministic
This approach is the most common choice for modern programming languages/environments
This also avoids problems with inputs that intentionally generate hash collision

Aside: hash DoS attacks

- A denial-of-service (DoS) attack aims to break or slow down an Internet site/service
- A particular attack (in 2003, but also 2011) made use of hash table implementation of popular programming languages
- Input to a web-based program is passed as key-value pairs, which are typically stored in a dictionary
If one intentionally posts an input with a large number of colliding keys,
- the hash table implementation needs to chain long sequences (separate
chaining) or probe a large number of times (open addressing)
and eventually re-hash
- This increases expected to $\mathrm{O}(1)$ time to worst-case complexity

Hash functions

and their properties

- A hash function must be consistent: if $\mathrm{a}=\mathrm{b}, \mathrm{h}(\mathrm{a})=\mathrm{h}(\mathrm{b})$

A hash function should minimize collisions: values for h should be uniformly distributed

- A hash function should be fast to compute (...or maybe not - if you are using it for passwords)

Hash codes

- Earlier we suggested dividing the hash function into two
- A has code that maps a variable-size object to an intege
- A compression method that squeezes the integer value to hash table size
- A hash code avoid collisions: colliding hash codes are unavoidably mapped the same table address
- A naive approach is to truncate (e.g., take the most or least significant bits), or pad with an arbitrary pattern (if object is shorter than the hash code)
This approach creates many collisions in real-world usage

Hash codes

xor or add

A simple approach is based on

- Bitwise add each k -bit segment of the memory representation of the object, ignoring the overflow: $h[x]=\sum_{i} x_{i}$
Similarly, one can use XOR instead of addition
- These methods meet the hash code requirement-
if $a=-b$, then $h(a)=-h(b)$
However, in practice, they create many collisions because of their associativity - abc, bca and cba all get the same hash code

Cyclic-shift hash codes

Instead of multiplying with powers of a constant, yclic-shift hashing shifts some bits from one end of me other at each step in the other at each step in
running sum

- Since bitwise operations are simple, this is a fast way of obtaining a non-associative valid has code

1010011001110100 1010111000110100

```
def cyclic_shift(s):
    nask = Oxf1f1
    \(\mathrm{h}=0\)
    for ch in e
        \(\mathrm{h}-(\mathrm{h} \ll 5\) \& mask) | (h>> 11)
        \(\mathrm{h}+-\) ord \((\mathrm{ch})\)
    return h
return
```

Polynomial hash codes

- Polynomial hash codes are calculated using

$$
h(x)=\sum_{i}^{n} x_{i} a^{n-i-1}=x_{0} a^{n-1}+x_{1} a^{n-2}+\ldots+x_{n-1}
$$

The important aspect is that now the function will produce different values with sequences with the same items in a different order

- The exact form is motivated by quick computation if rewritten as

$$
x_{n-1}+a\left(x_{n-2}+a\left(x_{n-3}+\ldots\right)\right)
$$

A short divergence: cryptographic hash functions

- Hash functions has an important role in cryptography

In cryptography, it is important to have hash functions for which it is difficult to find two keys with the same hash value
There are a wide range of well-known hash functions (which are also available in most programming environments)

- MD5

- SHA-1
- RIPEMD-160
- Whirlpool
- SHA-2
- SHA-2
- SHA-3
- BLAKE3
- These functions are designed for applications like digital fingerprinting, password storage,
Computationally inefficient for use in data structures

Summary

- Hash functions are useful for implementing map ADT efficiently
- Hash functions have a wide range of other applications
-The main issue in implementing a hash function is avoiding collisions, and handling them efficiently when they occur
- Reading. Goodrich, Tamassia, and Goldwasser (2013, chapter 10)

Next

- Algorithms on strings: pattern matching, edit distance, tries

Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13) Jurafsky and Martin (2009, section 3.11 , or 2.5 in online draft)

Acknowledgments, credits, references

冨 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013) Data Structures and Algorithms in Python. John Wiley \&s Sons, Incorporated. ISBN: 9781118476734
目 Jurafsky, Daniel and James H. Martin (2009). Speedh and Language Processing: An Introduction to Naturnl Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. Isen: 978-0-13-504196-3.

