
Minimum spannig trees
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2021/22

version: 9a1f942 @2021-12-08



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Spanning trees
reminder

A spanning tree of a graph is
• A spanning subgraph: it includes all nodes
• It is a tree: it is acyclic, and connected

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 1 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Spanning trees
reminder

A spanning tree of a graph is
• A spanning subgraph: it includes all nodes
• It is a tree: it is acyclic, and connected

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 1 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Spanning trees
reminder

A spanning tree of a graph is
• A spanning subgraph: it includes all nodes
• It is a tree: it is acyclic, and connected

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 1 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Spanning trees
reminder

A spanning tree of a graph is
• A spanning subgraph: it includes all nodes
• It is a tree: it is acyclic, and connected

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 1 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Minimum spanning trees

• Aminimum spanning tree (MST) is a spanning tree of
weighted graph with minimum total weigh

• MST is a fundamental problem with many applications,
including

– Network design (communication, transportation,
electrical, …)

– Cluster analysis
– Approximate solutions to traveling salesman problem
– Object/network recognition in images
– Avoiding cycles in broadcasting in communication

networks
– Dithering in images, audio, video
– Error correction codes
– DNA sequencing
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 2 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

The ‘cut property’

• A cut of a graph is a partition that divides its nodes into two disjoint
(non-empty) sets

• Given any cut, the edge with the lowest weight across the cut is in the MST

3 7

1

2

4

45

3

6

5

1

3

6

1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 3 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

The ‘cut property’

• A cut of a graph is a partition that divides its nodes into two disjoint
(non-empty) sets

• Given any cut, the edge with the lowest weight across the cut is in the MST

3 7

1

2

4

45

3

6

5

1

3

6

1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 3 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

The ‘cut property’

• A cut of a graph is a partition that divides its nodes into two disjoint
(non-empty) sets

• Given any cut, the edge with the lowest weight across the cut is in the MST

3 7

1

2

4

45

3

6

5

1

3

6

1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 3 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
intuition

• Prim-Jarník algorithm is a greedy algorithm for finding an MST for a
weighted undirected graph

• Algorithm starts with a single ‘start’ node, and grows the MST greedily
• At each step we consider a cut between nodes visited and the rest of the
nodes, and select the minimum edge across the cut

• Repeat the process until all nodes are visited

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 4 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1

3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

1

2
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
demonstration

4 7

1

2

4

45

3

6

5

1

3

6

1
3

3

12
5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 5 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Prim-Jarník algorithm
analysis

• Two loops over number of nodes n,
O(n2) if we need to search

• If we use a priority queue forQ, then
complexity becomes O(m logm)

1: pick any node s
2: C[s]← 0
3: for each node v ̸= s do
4: C[v]←∞
5: E[v]← None
6: T ← ∅
7: Q← nodes
8: while Q is not empty do
9: Find the node vwith min C[v]
10: Connect v to T
11: for edge (v,w), where w is in Q do
12: if cost(v,w) < C[w] then
13: C[w]← cost(v,w)
14: E[w]← v

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 6 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
intuition

• Another popular algorithm for finding MST on undirected graphs
• The main idea is starting with each node in its own partition
• At each iteration, we choose the edge with the minimum weight across any
two clusters, and join them

• Algorithm terminates when there are no clusters to join

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 7 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

1

2

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
demo

1

2

3

4

5

6

7

4 7

1

2

4

45

3

6

5

1

3

6

1

12

3

3

5

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 8 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Kruskal’s algorithm
analysis

• Loop over edges, but beware of the
sorting requirement

• With simple data structures
complexity is O(m logm)

1: T← ∅
2: for each node v do
3: create_cluster(v)
4: for (u,v) in edges sorted by weight do
5: if cluster(u) ̸= cluster(v) then
6: T ← T ∪ {(u, v)}
7: union(cluster(u), cluster(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 9 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Directed trees

• Trees with directed edges come in few flavors
– A rooted directed tree (arborescence) is an acyclic

directed graph where all nodes are reachable from
the root node through a single directed path (this is
what computational linguists simply calls a tree)

– An anti-arborescence is a rooted directed tree where
all edges are reversed

– A polytree (also called a directed tree) is a directed
graph where undirected edges form a tree

• The equivalent of finding an MST in a directed graph
is finding a rooted directed tree (arborescence)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 10 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Directed trees

• Trees with directed edges come in few flavors
– A rooted directed tree (arborescence) is an acyclic

directed graph where all nodes are reachable from
the root node through a single directed path (this is
what computational linguists simply calls a tree)

– An anti-arborescence is a rooted directed tree where
all edges are reversed

– A polytree (also called a directed tree) is a directed
graph where undirected edges form a tree

• The equivalent of finding an MST in a directed graph
is finding a rooted directed tree (arborescence)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 10 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Directed trees

• Trees with directed edges come in few flavors
– A rooted directed tree (arborescence) is an acyclic

directed graph where all nodes are reachable from
the root node through a single directed path (this is
what computational linguists simply calls a tree)

– An anti-arborescence is a rooted directed tree where
all edges are reversed

– A polytree (also called a directed tree) is a directed
graph where undirected edges form a tree

• The equivalent of finding an MST in a directed graph
is finding a rooted directed tree (arborescence)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 10 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
a sketch

• The MST for a directed graph has to start from a designated root node
– If selected node has any incoming edges, remove them
– It is also a common practice to introduce an artificial root node with

equal-weight edges to all nodes
• For all non-root nodes, select the incoming edge with lowest weight, remove
others

• If the resulting graph has no cycles, it is an MST
• If there are cycles break them

– Consider the cycle as a single node
– Select the incoming edge that yields the lowest cost if used for breaking the cycle

• Repeat until no cycles remain

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 11 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
demonstration

11

12

13

21

22

23

31

32

33

5

3
2 6

7 1

3

3

65

4

3

8

5

2

4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 12 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm
analysis

• The algorithm is generally defined recursively: at each step, create a new
graph with a contracted cycle call the procedure with the new graph

• At most n recursions: the cycle has to include more nodes at every step
• At each call,m steps for finding minimum incoming edge (also finding a cycle
with O(n), butm ⩾ n)

• The ‘vanilla’ algorithm runs in O(mn)

• There are improved versions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 13 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds algorithm in Computational Linguistics
dependency parsing

John saw Marry

subject object
root

• In a dependency analysis, the structure of the sentence is represented by
asymmetric binary relations between syntactic units

• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience
• The links (relations) may have labels (dependency types)
• A dependency analysis (parse) is simply a rooted directed tree

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 14 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Chu–Liu/Edmonds for dependency parsing

• Begin with fully connected weighted graph, except the root node has no
incoming edges

• Weights are estimated from a treebank, typically determined by a machine
learning method trained on a treebank

• We often use probabilities rather than costs/distances, so, rather than
minimizing, maximize the weight of the tree

• Given the fully connected graph, now the parsing becomes finding the MST
• This method is one of the most common (and successful) approaches to
dependency parsing

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 15 / 16



Introduction/motivation Prim-Jarník Kruskal Directed graphs

Summary

• Minimum spanning trees have many applications
• An MST of a undirected graph can be found (efficiently) using Prim-Jarník or
Kruskal’s algorithms

• For directed graph, the corresponding problem can be solved using
Chu–Liu/Edmonds algorithm (technically what we find is a rooted directed
tree, or arborescence)

• MST also has quite a few applications in CL/NLP
Next:

• Maps and hashing
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 16 / 16



Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 A.1



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 A.2



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 A.3



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 A.4



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2021/22 A.5


	Minimum spannig trees
	Introduction/motivation
	Spanning trees
	Spanning trees
	Spanning trees
	Spanning trees
	Minimum spanning trees
	The `cut property'
	The `cut property'
	The `cut property'

	Prim-Jarník
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm
	Prim-Jarník algorithm

	Kruskal
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm

	Directed graphs
	Directed trees
	Directed trees
	Directed trees
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm
	Chu–Liu/Edmonds algorithm in Computational Linguistics
	Chu–Liu/Edmonds for dependency parsing

	
	Summary


	Appendix
	Acknowledgments, credits, references


