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+ Some common approaches to algorithm design
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Recursion How does this recursion work
linearsearch again recursion trace/graph
writinga search.
+ Recursion is y i
1 search((2],2,8)

Recursion: practical issues Another recursive example

recurson depth and talrecursion every algorithm course s equired o ntroduce Fbonace numbers

Fibonacei numbers are defined as:
« Each function call requires some bookkeeping
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- Most environments limit the number of recursive calls: long chains of Sl (3 ©2 © e
recursion ar likely o cause erors
« Tail recursion (e.g., our . in math, and + Note that we now have binary
« Itisalso easy to optimize, and optimized by many compilers (not by the ‘maps wel to the recursive recursion, each function call creates
Python interprete) aigorthms wocalsfoself
+ We follow the math exacl, but is
thiscode efcent?
Visualizing binary recursion Complexity of (naive) Fibonacci algorithm
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Brute force Brute force
ampe i sl ot ays o gt i
 Segmentation s prevalentin CL.
« In some cases, we may need to enumerate all possible cases (e.g, to find the - words:
best solution) oot e o) '
+ Commn in combinatorial problems e e
+ Often ntractabl, practcal ony or sall it sizes =
e i + We consder thefollowing problem:
= Givena metricor score t deermine he“best” segmenation
T 5
« How can wo enunerate all possible seganentations of asrig?
Segmentation Segmentation
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+ Can you think of a non-recursive solution?




Enumerating segmentations

sketchof a non-recursive solution

Divide and conquer

« The general » itbecomes
trivial o solve
+ Once small parts are solved, the results are combined
+ Goes well with recursion
+ We have already seen a particular lavor: binary search
. like binary search and conguer
+ 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of ength n — 1
(3his is binary counting)
Divide and conquer Divide and conquer
Generatdea an example: esrest nlghbors(nly 8 sete)
Big problem « Task: find the closest two points =m
divide * Dt ol oq % e
iy 20 = 400 comparisons’ o
« Divide . - o
conquer * Sl sepamtly (conger - .
0510410 x 10 = 200 comparisons . e
« Combne pikheminimamotthe. | L
pa— individual solutions
+ Gain i higher when n s larger, and we divide further
Divide and conquer Divide and conquer
an cxample: nearest nfghbors(only aseteh)
+ Task:find the closest two points )
+ Directsolution: o0 J o « Thisis probably the most common pattern
20 = 400 comparisons' . + Divide and conquer does not always yield good result, the cost of merging
+ Divide ° 0 . should be less than the gain from the division(s)
* Solveseparey cnauer o . + Many of the important algoriths fal into this category:
10510410 x 10 = 200 comparisons, B ~ merge sort and quick sort (coming soon)
+ Combine: pick T . o - integer muliplication
 matr multpliation

+ Gain is higher when n is larger, and we divide further

- fast Furrier transform (FFT)

Greedy algorithms

« Analgorithm is greedy if it optimizes a local constraint

« In others they may result n “good enough' solutions

« Ifthey work,they are effcient

+ An important class of graph algorithms fallinto this category (., finding
Shortest paths, scheduling)

Greedy algorithms
asimpl sample: change making

« We want
1. Tickthe gt o
2 sets—s—
5 repent 1 &2 unils =0
« Is this algorithm correct?
« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
« Is it correct if the coin values were limited Euro coins?

forap: 5

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Dynamic programming Dynamic programming
cxample Fibonacc
+ ot pemorsvta, s = (05 0, 1:1D:
+ Dyna tosave . Caeola) © mesofib(a-1) + memofib(a-2)
‘computation « return memo[n]
+ Itissometims called memotzation (it s ot  typo)
1 ber of alig se fll Jud
common parsing algorthms + W save the resuls clculated in a dictionary,
« ifthe result i a1 ) we return
+ Otherwise e calculte recursively as bfore
« The diference i big, but there is also 2 neater”solution without (explict)
memzation
Complexity of Fibonacei algorithm with dynamic pogramming Summary
rson fre for £30.(7)
« Wosa o gemrs apprechs o i)l e
 De y
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~ Backtracking, Branciand-bound
~ Randomized algorthms
 Transformation
 De Jgorithms s difficul (possibs
Next:
 Sorting




Nearest neighbors

Linear search

alite bit of opimization

o | e, vl 0 TR
problem, which divides th input it o unt h soution becomes vial C i
. G 5 2 v 11 sacctoma . 4
implementation was provided in the previous lecture) 5 o i g
Which one i fater, and why?
Better solutions for Fibonacci numbers Segmentation
wilhyieta
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Which one is faster /better?

1 dof soguent rseq)
if len(seq)
yiold [seq)

1

else
for 39 o sogentr(eeqli:])
yiold [seqlo]
itirieee s s SO
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