Overview
Algorithmic patterns
Data Structures and Algorithms for Computational Linguistis 1l
(1sCL8A7)

+ Some common approaches to algorithm design

Gagn Goltekin - Revisting recursion
ceoltekindsfs. uni-tuebingen.de ~ Brute force
- Divide and conquer
~ Greedy algorithms
Gniversty o Tl
Serina o Sprachvsrmchtt ~ Dynamic programming

Winter Semester 2021/22

Recursion How does this recursion work
linearsearch again recursion trace/graph
writinga search.
+ Recursion is y i
1 search((2],2,8)

Recursion: practical issues Another recursive example

recurson depth and talrecursion every algorithm course s equired o ntroduce Fbonace numbers

Fibonacei numbers are defined as:
« Each function call requires some bookkeeping

fo-o
.c » -
fancton call e e -
- Most environments limit the number of recursive calls: long chains of Sl (3 ©2 © e
recursion ar likely o cause erors
« Tail recursion (e.g., our . in math, and + Note that we now have binary
« Itisalso easy to optimize, and optimized by many compilers (not by the ‘maps wel to the recursive recursion, each function call creates
Python interprete) aigorthms wocalsfoself
+ We follow the math exacl, but is
thiscode efcent?
Visualizing binary recursion Complexity of (naive) Fibonacci algorithm
Fecursion tre for £15()
o
g o
g0d0d0
00
Brute force Brute force
ampe i sl ot ays o gt i
 Segmentation s prevalentin CL.
« In some cases, we may need to enumerate all possible cases (e.g, to find the - words:
best solution) oot e o) '
+ Commn in combinatorial problems e e
+ Often ntractabl, practcal ony or sall it sizes =
e i + We consder thefollowing problem:
= Givena metricor score t deermine he“best” segmenation
T 5
« How can wo enunerate all possible seganentations of asrig?
Segmentation Segmentation
v sbation ksl
| dot seguent_<(oop) [abod), fabe,d, ab,cd,fabc,d,
s en {or b o b d] o b, <] o, b]
D e 1
N Teturn [(seq)) (), [bc,],
D tor seg in segaent_r(seqlt])] b cdl b a7)
. segs.append([seq[0]] + seg)
Sete. appendlaeq o] + seglol] + segli:)) {fedl (o]
U e s =

[c)
{147}

+ Can you think of a non-recursive solution?

Enumerating segmentations

sketchof a non-recursive solution

Divide and conquer

« The general » itbecomes
trivial o solve
+ Once small parts are solved, the results are combined
+ Goes well with recursion
+ We have already seen a particular lavor: binary search
. like binary search and conguer
+ 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of ength n — 1
(3his is binary counting)
Divide and conquer Divide and conquer
Generatdea an example: esrest nlghbors(nly 8 sete)
Big problem « Task: find the closest two points =m
divide * Dt ol oq % e
iy 20 = 400 comparisons’ o
« Divide . - o
conquer * Sl sepamtly (conger - .
0510410 x 10 = 200 comparisons . e
« Combne pikheminimamotthe. | L
pa— individual solutions
+ Gain i higher when n s larger, and we divide further
Divide and conquer Divide and conquer
an cxample: nearest nfghbors(only aseteh)
+ Task:find the closest two points)
+ Directsolution: o0 J o « Thisis probably the most common pattern
20 = 400 comparisons' . + Divide and conquer does not always yield good result, the cost of merging
+ Divide ° 0 . should be less than the gain from the division(s)
* Solveseparey cnauer o . + Many of the important algoriths fal into this category:
10510410 x 10 = 200 comparisons, B ~ merge sort and quick sort (coming soon)
+ Combine: pick T . o - integer muliplication
 matr multpliation

+ Gain is higher when n is larger, and we divide further

- fast Furrier transform (FFT)

Greedy algorithms

« Analgorithm is greedy if it optimizes a local constraint

« In others they may result n “good enough' solutions

« Ifthey work,they are effcient

+ An important class of graph algorithms fallinto this category (., finding
Shortest paths, scheduling)

Greedy algorithms
asimpl sample: change making

« We want
1. Tickthe gt o
2 sets—s—
5 repent 1 &2 unils =0
« Is this algorithm correct?
« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
« Is it correct if the coin values were limited Euro coins?

forap: 5

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Dynamic programming Dynamic programming
cxample Fibonacc
+ ot pemorsvta, s = (05 0, 1:1D:
+ Dyna tosave . Caeola) © mesofib(a-1) + memofib(a-2)
‘computation « return memo[n]
+ Itissometims called memotzation (it s ot typo)
1 ber of alig se fll Jud
common parsing algorthms + W save the resuls clculated in a dictionary,
« ifthe result i a1) we return
+ Otherwise e calculte recursively as bfore
« The diference i big, but there is also 2 neater”solution without (explict)
memzation
Complexity of Fibonacei algorithm with dynamic pogramming Summary
rson fre for £30.(7)
« Wosa o gemrs apprechs o i)l e
 De y
S e
~ Backtracking, Branciand-bound
~ Randomized algorthms
 Transformation
 De Jgorithms s difficul (possibs
Next:
 Sorting

Nearest neighbors

Linear search

alite bit of opimization

o | e, vl 0 TR
problem, which divides th input it o unt h soution becomes vial C i
. G 5 2 v 11 sacctoma . 4
implementation was provided in the previous lecture) 5 o i g
Which one i fater, and why?
Better solutions for Fibonacci numbers Segmentation
wilhyieta

1 [0 s e

Which one is faster /better?

1 dof soguent rseq)
if len(seq)
yiold [seq)

1

else
for 39 o sogentr(eeqli:])
yiold [seqlo]
itirieee s s SO

Acknowledgments, credits, references

« Some of the slides are based on the previous year's course by Corina Dima.

B G, Michacl T, Robert Tomssia,and Michos 1. Gl (2
Dut Sicturs and At n P, oo
i

	Algorithmic patterns
	Introduction
	Overview

	More on recursion
	Recursion
	How does this recursion work
	Recursion: practical issues
	Another recursive example
	Visualizing binary recursion
	Complexity of (naive) Fibonacci algorithm

	Some common algorithm patterns
	Brute force
	Brute force
	Segmentation
	Segmentation
	Enumerating segmentations
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Greedy algorithms
	Greedy algorithms
	Dynamic programming
	Dynamic programming
	Complexity of Fibonacci algorithm with dynamic pogramming

	
	Summary
	Nearest neighbors
	Linear search
	Better solutions for Fibonacci numbers
	Segmentation
	Acknowledgments, credits, references

