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demonstration

« We start with an ‘educational” sorting algorithm
swapped - True
. to understand, b in practice. o = len(seq)
« We start from bubble sort, and see the improvements over it uhile svapped:
« The idea is simple:
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+ The repetitive algorithm pattern is common
Insertion sort Insertion sort
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Insertion sort Insertion sort

demanstraton demonstration

for 1 in range(1, len(seq)): for 1 in range(1, len(seq))
cur = seqli] cur = seqli]
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Insertion sort

: o 4 42 range(r, dentens))
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Insertion sort

« Worst case: O(n?)

Insertion sort

« Insertion sort i simple
« Itis efficient for short sequences

Merge sort

Introduction

« Merge sortis a divide-

d-conquer algorithm for sorting

‘merge sort or quicksort (coming next)
. ltis

in-place

« Itis online: it can sort items as they arrive
tabl: it does not swap elements with equal keys
« Itis adaptive: faster if order of elements is closer to the sorted sequence

. ltis

« Ithas good asymptotic performance
+ There are many practical cases where merge sort i used
T e
= splitthe
= F e subeequences
erge the sorted lists

« Itis relatively easy to understand (once you get your head around recursion)

Merge sort

demansrston - divide

Merge sort

demonstaton - co

bine

Merging sequences

sequences to be merged

Complexity of the merge sort

DAl e + Keep two indices on both sequences,
s 1(," Lty starting from the beginning R
15 e or « Pick the smallest, place it in the -
4 < len(st) and s104] < s203]:  target sequence
stieg) - it « The algorithm requires O(n) steps menges,soe2
olee mplete
stivg] = s203)
i
Mer,

the implementation

dot merge_sort(s)
n = len(s)

/31, star/2:)
nerge_sori(s)
merge_sort(s2)
mergo(st, 2,

Bl

+ Once we have merge ), the restis trivial

Merge sort: summary

« Straightforward application of divide-and-conquer

logn) complexity

. in-place: requires O(n) additional

= Split the array into two
ooy st bt s
when the input is length |

sequential a
« Merge sortis e

* Iis patulany waeul o setings with ow randor-cces memosy or

« Ttis a well studicd algorithm, there are many variants (in-place,

non-recursive)
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Quicksort
introduction
+ Quick:

pop:

Quicksort

demonstraton - divide

so[er[ss[12]57[76] 93] 72

Ateach divide step

is that big

. P s « Picka pivot
done before splitting « Recursively call quicksort twice
o1 o L for items less than thepivot
merge sorton average G foritems greater than the pivot
+ General idea: pick a pivot p,and divide the sequence into three parts as + O(n) operations
1 smaler than a particular clement
G larger than a patiular cement p
E equal to. particular clement p
+ sort L and G recursively
« combination is simple concatenation
Quicksort Quicksort
dot gsort(seq)
it Jonteeq <@ D¢ revm seq
Ateach combine step: oy o "’i IRl
+ Smply conctenate L gsorechs for x 1n et it X5 seatlD 4o b
L 1
© items equal top
G the sorid temegreater than p
+ Noneed for O(n) merging « Practical implementations are nt very different
+ Common oD include
= inplac
7 g the ot mre carctlly
Quicksort Quicksort
analyss average-case complexity and presening the worst case
ABCDEF
» Simiar t the mergs o quicsor perorns ) + Worst case of the quicksort is when the input sequence is sorted
operations at each level In recursior ABCDE « If the input sequence is (approximately) random, the expected number of
+ The overall complexity is pmpumuml tonxt, elements in each divide is v/
where L15 depihof the ABCD + To reduce the probabilty of worst case, randomized quicksort picks the pivot
« The recursion tree of merge sort i balanced, so depth / randomly
islogn. ABC the medin of th pivo, bu
« For quicksort, we do not have a balanced-tree A\ " fining mecian aleady rquires O 1o ) (or O{), bt o very pmucan
guarantee AB + A common approach is picking three values (tyipcally first, middle and last)
+ In the worst case, the depth of the tree can be n, N\ from the sequence, and selecting the ‘median of thre’ as the pivot
resulting in O(n) complexity K

Quicksort

+ Complexity: O(nlog ) average, O[n?) worst
« Despite ts worst-case O(n?) complexity, quicksortis faster than merge sort on
average (in practice)

. pl version is more
common)

« Quicksort is not stable

+ Quicksortis one of the most-studied algorithms: there are many variants, its
properties are well known

pl

Sorting algorithms so far, and the lower bound

Algorithm _ worst_average_best__memory _in-place _stable
e n T ves  yes
non? n 1 yes  yes
nlogn nlogn nlogn o yes

nlogn nlogn logn  yes  no
+ Can we dobetter than O{nlogn)?
the answer

turns out to be o’
« Lower bound of worst-case sorting is Q(nlog n)

Bucket sor

introduction

« Bucket sort puts elements of the input into a pre-defined number of ordered
buckets’

« Elements i each bucket s sorted (typically using insertion sort)

« We can than retrieve the sorted elements by visiting each bucket

s to each other

bucket to place them
« In special cases, this results in O[n) worst-case complexity

Bucket sort

demonstration

+ While placing the elements into the buckets, no
omparisons between the keys

« Inside the buckets worst-case O(n?] (insertion sort)

+ What if we had as many buckets as the keys?

2 Otn)sonimgame

Radix sort

« Ina large number of cases, we want to sort objects with multiple keys
« In such cases, we define the order of key pairs as
(ki 1) < (K2, L2) i Ky < Ky, or kg =Ky and Ly < 1
« This definition can be generalized to key tuples of any length
« This ordering is known as lexicographic or dictionary order
i

for this purpose

Summary
* Sorting s anmportant and welltudisd omputationl poblns
5 inp optimized,
R ‘multiple basic algorithms
« Naive sorting algorithms run in O(n?) time
+ Lower bound on time is Q(nlogn), a

algorithms achieve this
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
+ And a fun way to see sorting in action:
https://uus. youtube. con/user/AlgoRythaics
Next:
« Trees

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter )



https://www.youtube.com/user/AlgoRythmics
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