Why study sorting

Sorting
Data Structures and Algorithms for Computational Linguistics Il
(ISCL-BA07) + Sorting (and common)
. strengths and w algorithms for
Gagn Goltekin sorting
ceoltekindsfs. uni-tuebingen. de « Many p L will help you
solve others
Griersty o Tabing o highly optimized (we i
e about asymplotic performance guarantees
Winter Semester 2021/22 « In some (rare) cases, implementing your own sorting algorithm may be
benficial

Bubble sort Bubble sort

demonstration

« We start with an ‘educational” sorting algorithm
swapped - True
. to understand, b in practice. o = len(seq)
« We start from bubble sort, and see the improvements over it uhile svapped:
« The idea is simple:
- comparefisttwo lements,swap f ot n rder

e gl S eaals 2 1
seqlil, seqli + 11\
i+ 1), seqli]
svapped - True

S e A e
were o swaps in the ast ieration

Bubble sort Insertion sort
+ Worst case: O(n?] swapped = True Inserti t of the le ti Igoriths
ot uclol) NN « Insertion ort i o of the simpler soring algorthn
@ e Qe 2 = len(ssq) « It1s easy to understand, and reasonably fast
+ Average case: O “m“ SWPP ed
0(n?) comparisons, O(n?) swaps. N Falu oG B 2 ity
e b P TR Aot merge. e quicksart (wewlll study those later)
- Bestcases Ofm) if seqli] > s«q[i + 1] * The general ideasmple
O(n) comparisons, O(1) swaps sl s -) e
 Space complexity: O(1) doald + 11, seqls) = ot th cement o the correct posiion:
+ There are more concerns than performance suapped - T « shiftall elements larger than the new one o the ight
v . Notpracial it notused o the e e 1ot plce
 Bubbie or b place in practice
+ The repetitive algorithm pattern is common
Insertion sort Insertion sort
for 1 in rangat, len(aeq)) for 4 1n ranga(t, Len(aeq))
cur - seqli] aur - seqli]
fA A A EI 2
Bt sty - 1 > EH (A e it sty - 1>
L 3 vongott 14> Laa o oot s
seqlj] = seqlj - 1] seqlj] = seqlj - 1]
o 2
saaly) - cur seats] - cur
Insertion sort Insertion sort
for 1 1n rangat, len(aeq)) for 4 in rngeCh, Lenteen)
cur = seqli] cur = seq[i]
§oa
ihile seqly - 11 > cur\ e sty -
a0d 1 tn range(t,1+) a J 1n range(L,ivD):
ssqls] = seali - 1) seals) = wodls - 1
yo=1 =
seq(j] = cur seq(j] = cur

Insertion sort Insertion sort

demanstraton demonstration

for 1 in range(1, len(seq)): for 1 in range(1, len(seq))
cur = seqli] cur = seqli]

B

Jod 3=1
Unile seqly - 1] > cur\ While seqly

aur\
Znd 3 in range(t,ith) and § in range(1,i+1)
seals) = sealy - 2 seqls) - seqls - 1]
seqli] - cur seq(y] = cur

Insertion sort

: o 4 42 range(r, dentens))
for 1 in range(1, len(seq)) Cle “"“‘P“"S?"Svom bemm cur = seqlk]
e - v e 01
§o (n?) comparisans, O(n2) swaps while seql - 1] > cur\
e seqly - 11 > curd Bt case: O(n) P ey ey
e r]a“z=< 1) O(n) comparisons, O(1] swaps
52 J‘ == « Space complexity: O(1] saq[]] aur
sealj] = cur « In practice, insertion sort is faster
than the bubble sort (and also
selection sort)

Insertion sort

« Worst case: O(n?)

Insertion sort

« Insertion sort i simple
« Itis efficient for short sequences

Merge sort

Introduction

« Merge sortis a divide-

d-conquer algorithm for sorting

‘merge sort or quicksort (coming next)
. ltis

in-place

« Itis online: it can sort items as they arrive
tabl: it does not swap elements with equal keys
« Itis adaptive: faster if order of elements is closer to the sorted sequence

. ltis

« Ithas good asymptotic performance
+ There are many practical cases where merge sort i used
T e
= splitthe
= F e subeequences
erge the sorted lists

« Itis relatively easy to understand (once you get your head around recursion)

Merge sort

demansrston - divide

Merge sort

demonstaton - co

bine

Merging sequences

sequences to be merged

Complexity of the merge sort

DAl e + Keep two indices on both sequences,
s 1(," Lty starting from the beginning R
15 e or « Pick the smallest, place it in the -
4 < len(st) and s104] < s203]: target sequence
stieg) - it « The algorithm requires O(n) steps menges,soe2
olee mplete
stivg] = s203)
i
Mer,

the implementation

dot merge_sort(s)
n = len(s)

/31, star/2:)
nerge_sori(s)
merge_sort(s2)
mergo(st, 2,

Bl

+ Once we have merge), the restis trivial

Merge sort: summary

« Straightforward application of divide-and-conquer

logn) complexity

. in-place: requires O(n) additional

= Split the array into two
ooy st bt s
when the input is length |

sequential a
« Merge sortis e

* Iis patulany waeul o setings with ow randor-cces memosy or

« Ttis a well studicd algorithm, there are many variants (in-place,

non-recursive)

A short divergence to complesity

the diferencebetween O(n and

A short divergence to complexity
the diffrence btween O

and nlogn

n nlen n o

3 2 & aonano

8 2 6 -
] 381 0% _
1K 10240 1048576 wsons |

M 20971520 1099511627776

1G 32212254720 1152921504 606846976 oms

I

Quicksort
introduction
+ Quick:

pop:

Quicksort

demonstraton - divide

so[er[ss[12]57[76] 93] 72

Ateach divide step

is that big

. P s « Picka pivot
done before splitting « Recursively call quicksort twice
o1 o L for items less than thepivot
merge sorton average G foritems greater than the pivot
+ General idea: pick a pivot p,and divide the sequence into three parts as + O(n) operations
1 smaler than a particular clement
G larger than a patiular cement p
E equal to. particular clement p
+ sort L and G recursively
« combination is simple concatenation
Quicksort Quicksort
dot gsort(seq)
it Jonteeq <@ D¢ revm seq
Ateach combine step: oy o "’i IRl
+ Smply conctenate L gsorechs for x 1n et it X5 seatlD 4o b
L 1
© items equal top
G the sorid temegreater than p
+ Noneed for O(n) merging « Practical implementations are nt very different
+ Common oD include
= inplac
7 g the ot mre carctlly
Quicksort Quicksort
analyss average-case complexity and presening the worst case
ABCDEF
» Simiar t the mergs o quicsor perorns) + Worst case of the quicksort is when the input sequence is sorted
operations at each level In recursior ABCDE « If the input sequence is (approximately) random, the expected number of
+ The overall complexity is pmpumuml tonxt, elements in each divide is v/
where L15 depihof the ABCD + To reduce the probabilty of worst case, randomized quicksort picks the pivot
« The recursion tree of merge sort i balanced, so depth / randomly
islogn. ABC the medin of th pivo, bu
« For quicksort, we do not have a balanced-tree A\ " fining mecian aleady rquires O 1o) (or O{), bt o very pmucan
guarantee AB + A common approach is picking three values (tyipcally first, middle and last)
+ In the worst case, the depth of the tree can be n, N\ from the sequence, and selecting the ‘median of thre’ as the pivot
resulting in O(n) complexity K

Quicksort

+ Complexity: O(nlog) average, O[n?) worst
« Despite ts worst-case O(n?) complexity, quicksortis faster than merge sort on
average (in practice)

. pl version is more
common)

« Quicksort is not stable

+ Quicksortis one of the most-studied algorithms: there are many variants, its
properties are well known

pl

Sorting algorithms so far, and the lower bound

Algorithm _ worst_average_best__memory _in-place _stable
e n T ves yes
non? n 1 yes yes
nlogn nlogn nlogn o yes

nlogn nlogn logn yes no
+ Can we dobetter than O{nlogn)?
the answer

turns out to be o’
« Lower bound of worst-case sorting is Q(nlog n)

Bucket sor

introduction

« Bucket sort puts elements of the input into a pre-defined number of ordered
buckets’

« Elements i each bucket s sorted (typically using insertion sort)

« We can than retrieve the sorted elements by visiting each bucket

s to each other

bucket to place them
« In special cases, this results in O[n) worst-case complexity

Bucket sort

demonstration

+ While placing the elements into the buckets, no
omparisons between the keys

« Inside the buckets worst-case O(n?] (insertion sort)

+ What if we had as many buckets as the keys?

2 Otn)sonimgame

Radix sort

« Ina large number of cases, we want to sort objects with multiple keys
« In such cases, we define the order of key pairs as
(ki 1) < (K2, L2) i Ky < Ky, or kg =Ky and Ly < 1
« This definition can be generalized to key tuples of any length
« This ordering is known as lexicographic or dictionary order
i

for this purpose

Summary
* Sorting s anmportant and welltudisd omputationl poblns
5 inp optimized,
R ‘multiple basic algorithms
« Naive sorting algorithms run in O(n?) time
+ Lower bound on time is Q(nlogn), a

algorithms achieve this
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
+ And a fun way to see sorting in action:
https://uus. youtube. con/user/AlgoRythaics
Next:
« Trees

+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter)

https://www.youtube.com/user/AlgoRythmics

Acknowledgments, credits, references

+ Some of the slides are based on the previous year's course by Corina Dima.

B Goodrich, Michael T, Roberto Tamassia, and Michael H. Gold
‘Data Structures and Algorithms in Python. |
it

	Sorting
	Introduction
	Why study sorting

	Bubble sort
	Bubble sort
	Bubble sort
	Bubble sort

	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort

	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merging sequences
	Complexity of the merge sort
	Merge sort
	Merge sort: summary
	A short divergence to complexity
	A short divergence to complexity

	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Sorting algorithms so far, and the lower bound

	Bucket/radix sort
	Bucket sort
	Bucket sort
	Radix sort

	
	Summary

	Appendix
	Acknowledgments, credits, references

